


# iSMA-B-FCU

User Manual

## Hardware

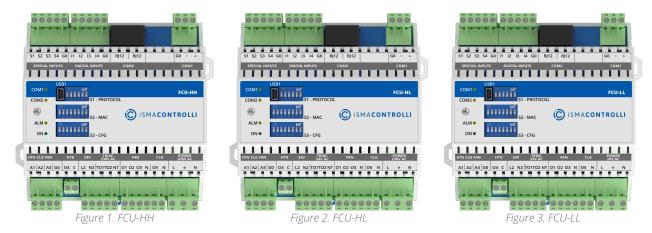




iSMA CONTROLLI S.p.A. - Via Carlo Levi 52, 16010 Sant'Olcese (GE) - Italy | support@ismacontrolli.com



### **Table of Contents**


| 1     | Introduction                                | 3  |
|-------|---------------------------------------------|----|
| 1.1   | Revision History                            | 3  |
| 2     | Safety Rules                                | 4  |
| 3     | Technical Specification                     | 5  |
| 4     | Hardware Specification                      | 8  |
| 4.1   | Dimensions                                  | 8  |
| 4.2   | Power Supply                                | 8  |
| 4.2.1 | 24 V AC Power Supply for External Equipment | 9  |
| 4.3   | RJ12 Socket for External Connections        | 9  |
| 4.4   | Front Panel and DIP Switches                | 11 |
| 4.4.1 | USB1 Port                                   | 11 |
| 4.4.2 | LED                                         | 11 |
| 4.4.3 | DIP Switch                                  | 12 |
| 4.5   | RS485 Communication                         | 15 |
| 4.5.1 | Connecting RS485 Communication Bus          | 15 |
| 4.5.2 | RS485 Grounding and Shielding               | 15 |
| 4.5.3 | RS485 Network Termination                   | 15 |
| 4.6   | Terminals and Internal Connections          |    |
| 4.6.1 | iSMA-B-FCU-HH                               | 16 |
| 4.6.2 | iSMA-B-FCU-HL                               | 17 |
| 4.6.3 | iSMA-B-FCU-LL                               | 17 |
| 4.7   | Default Settings                            |    |
| 4.7.1 | Restoring Default Settings                  | 19 |
| 5     | Inputs and Outputs                          | 20 |
| 5.1   | Inputs                                      |    |
| 5.1.1 | Special Inputs                              |    |
| 5.1.2 | Digital Inputs                              |    |
| 5.2   | Outputs                                     | 23 |
| 5.2.1 | Triac Outputs                               | 23 |
| 5.2.2 | Digital Outputs                             | 24 |
| 5.2.3 | Analog Outputs                              |    |
| 6     | List of Supported Temperature Sensors       |    |
| 7     | MAC DIP Switch Addressing Table             |    |

#### **1** Introduction

The iSMA-B-FCU is a fully programmable controller, built with the aim of controlling the FCU. The controller is factory-equipped with the two most popular open communication protocols Modbus ASCII/RTU and BACnet MS/TP, which are selected using DIP switches.

To minimize time and simplify the commissioning process the controller is delivered with universal application, which supports the most popular types of FCU. Dedicated DIP switch allows adjusting parameters of the application. Additionally, in the BACnet protocol, the application has the built-in function, which allows automatically to bind master and slave controllers in groups.

In cases if the standard application does not meet the project requirements, it can be modified or created from scratch. Changing of the application is possible in real-time by USB port. There are three hardware versions which have different types of triac outputs and power supply (iSMA-B-FCU-HH, iSMA-B-FCU-HL, iSMA-B-FCU-LL).



### **1.1 Revision History**

| Rev. | Date        | Description                                                                                                                                                                                                                                                                                 |
|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.5  | 19 Jul 2024 | <ul> <li>Corrected FCU-HL diagram</li> <li>Updated information about the default settings (I/O configuration cleared while restoring to default settings)</li> <li>Updated information about setting the BACnet device ID</li> <li>Updated SI temperature input type information</li> </ul> |
| 1.4  | 21 Feb 2023 | <ul> <li>Updated RJ12 Socket for External Connections section</li> <li>Editorial corrections</li> </ul>                                                                                                                                                                                     |
| 1.3  | 28 Feb 2022 | Rebranded                                                                                                                                                                                                                                                                                   |
| 1.2  | -           | Company data update                                                                                                                                                                                                                                                                         |
| 1.1  | -           | iSMA-B-FCU-LL hardware description added                                                                                                                                                                                                                                                    |
| 1.0  | -           | First edition                                                                                                                                                                                                                                                                               |

Table 1. Revision history

### 2 Safety Rules

- Improper wiring of the product can damage it and lead to other hazards. Make sure that the product has been correctly wired before turning the power on.
- Before wiring or removing/mounting the product, make sure to turn the power off. Failure to do so might cause an electric shock.
- Do not touch electrically charged parts such as power terminals. Doing so might cause an electric shock.
- Do not disassemble the product. Doing so might cause an electric shock or faulty operation.
- Use the product only within the operating ranges recommended in the specification (temperature, humidity, voltage, shock, mounting direction, atmosphere, etc.). Failure to do so might cause a fire or faulty operation.
- Firmly tighten the wires to the terminal. Failure to do so might cause a fire.
- Avoid installing the product in close proximity to high-power electrical devices and cables, inductive loads, and switching devices. Proximity of such objects may cause an uncontrolled interference, resulting in an instable operation of the product.
- Proper arrangement of the power and signal cabling affects the operation of the entire control system. Avoid laying the power and signal wiring in parallel cable trays. It can cause interferences in monitored and control signals.
- It is recommended to power controllers/modules with AC/DC power suppliers. They provide better and more stable insulation for devices compared to AC/AC transformer systems, which transmit disturbances and transient phenomena like surges and bursts to devices. They also isolate products from inductive phenomena from other transformers and loads.
- Power supply systems for the product should be protected by external devices limiting overvoltage and effects of lightning discharges.
- Avoid powering the product and its controlled/monitored devices, especially high power and inductive loads, from a single power source. Powering devices from a single power source causes a risk of introducing disturbances from the loads to the control devices.
- If an AC/AC transformer is used to supply control devices, it is strongly recommended to use a maximum 100 VA Class 2 transformer to avoid unwanted inductive effects, which are dangerous for devices.
- Long monitoring and control lines may cause loops in connection with the shared power supply, causing disturbances in the operation of devices, including external communication. It is recommended to use galvanic separators.
- To protect signal and communication lines against external electromagnetic interferences, use properly grounded shielded cables and ferrite beads.
- Switching the digital output relays of large (exceeding specification) inductive loads can cause interference pulses to the electronics installed inside the product. Therefore, it is recommended to use external relays/contactors, etc. to switch such loads. The use of controllers with triac outputs also limits similar overvoltage phenomena.
- Many cases of disturbances and overvoltage in control systems are generated by switched, inductive loads supplied by alternating mains voltage (AC 120/230 V). If they do not have appropriate built-in noise reduction circuits, it is recommended to use external circuits such as snubbers, varistors, or protection diodes to limit these effects.

### **3 Technical Specification**

|                             |                               | iSMA-B-FCU-<br>HH                                                                                               | iSMA-B-FCU-<br>HL                             | iSMA-B-<br>FCU-LL                       |  |  |  |
|-----------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|--|--|--|
|                             |                               |                                                                                                                 |                                               |                                         |  |  |  |
| Power Supply                | Voltage                       | 230 V AC ± 10%                                                                                                  |                                               | 24 V AC ± 10%                           |  |  |  |
|                             | Power consumption             | Max. 12 VA (including 7 VA for triac outputs)                                                                   |                                               |                                         |  |  |  |
| Special Inputs              | Temperature input             | Measurement with attached RTDS (Real Time Digital<br>Simulator)<br>Resolution ±0.1°C<br>Accuracy ±0.2°C at 25°C |                                               |                                         |  |  |  |
|                             | Voltage input                 | Voltage measureme<br>impedance 120 kΩ)<br>Resolution ±6 mV<br>Accuracy ±50 mV                                   | Resolution ±6 mV                              |                                         |  |  |  |
|                             | Resistance input              |                                                                                                                 | ment from 0 to 700 l<br>ution ±20 Ω for 20 kΩ |                                         |  |  |  |
|                             | Dry contact input             | Output current ~0.2                                                                                             | mA                                            |                                         |  |  |  |
|                             | Measurement resolution        | 12 bits                                                                                                         |                                               |                                         |  |  |  |
| Digital Inputs              | Туре                          | Dry contact                                                                                                     |                                               |                                         |  |  |  |
|                             | Max. input frequency          | 100 Hz                                                                                                          |                                               |                                         |  |  |  |
| Analog Outputs              | Voltage range                 | 0 to 10 V DC                                                                                                    |                                               |                                         |  |  |  |
|                             | Max. load current             | 5 mA                                                                                                            |                                               |                                         |  |  |  |
|                             | Resolution                    | 12 bits                                                                                                         |                                               |                                         |  |  |  |
|                             | Accuracy                      | ±1%                                                                                                             |                                               |                                         |  |  |  |
| Digital Outputs<br>(Relays) | Resistive load (FAN, CLG)     | 6 A at 230 V AC or 6 A at 30 V AC                                                                               |                                               |                                         |  |  |  |
| (Relays)                    | Inductive load AC3 (FAN, CLG) | 75 VA at 230 V AC or 10 W at 30 V AC                                                                            |                                               |                                         |  |  |  |
|                             | Resistive load (HTG)          | 10 A at 230 V AC or 10 A at 30 V AC                                                                             |                                               |                                         |  |  |  |
|                             | Inductive load AC3 (HTG)      | 750 VA at 230 V AC                                                                                              |                                               |                                         |  |  |  |
| Triac Outputs               | Load                          | Max.: 0.5 A at 230 Max.: 0.3 A at 24 M                                                                          |                                               | Min.: 1 mA<br>Max.: 0.5 A at<br>24 V AC |  |  |  |
|                             | Peak load per channel         | 1.5 A (30 s)                                                                                                    |                                               |                                         |  |  |  |

C ISMACONTROLLI

|                        | Gate control                                    | Zero crossing turn (                                                      | DN                                                                               |  |  |  |
|------------------------|-------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
|                        | Frequency range                                 | 47 to 63 Hz                                                               |                                                                                  |  |  |  |
|                        | Snubber                                         | Snubberless triac                                                         |                                                                                  |  |  |  |
| Power Supply<br>Output | Power supply output                             | 24 V AC ± 20%, 7<br>VA                                                    | 24 V AC $\pm$ 20%, 7 VA** In HL this power supply is also used for triac outputs |  |  |  |
| COM1                   | RS485 interface                                 | Up to 128 devices<br>Fail-safe receiver (bus open, bus shorted, bus idle) |                                                                                  |  |  |  |
|                        | Communication protocols                         | Modbus RTU, Modbus ASCII or BACnet MS/TP set by switch                    |                                                                                  |  |  |  |
|                        | Ports                                           | Screw connector                                                           |                                                                                  |  |  |  |
|                        | Baud rate                                       | From 2400 to 1152                                                         | 00 set by switch                                                                 |  |  |  |
|                        | Address                                         | 0 to 255 set by DIP                                                       | switch                                                                           |  |  |  |
| СОМ2                   | RS485 interface                                 | Switch mode, up to 128 devices                                            |                                                                                  |  |  |  |
|                        | Communication protocol                          | Modbus RTU                                                                |                                                                                  |  |  |  |
|                        | Ports                                           | 2 RJ12 ports                                                              |                                                                                  |  |  |  |
|                        | Baud rate                                       | From 2400 to 115200                                                       |                                                                                  |  |  |  |
|                        | Power supply for external device                | 34 V DC ± 15%, 2.5 W                                                      |                                                                                  |  |  |  |
| USB1                   | USB                                             | Mini USB 2.0                                                              |                                                                                  |  |  |  |
| Ingress Protection     | IP                                              | IP40 for indoor insta                                                     | allation                                                                         |  |  |  |
| Temperature            | Storage                                         | -40°C to +85°C (-40                                                       | °F to +185°F)                                                                    |  |  |  |
|                        | Operating                                       | -10°C to +50°C (14°                                                       | F to 122°F)                                                                      |  |  |  |
| Humidity               | Relative                                        | 5 to 95%                                                                  |                                                                                  |  |  |  |
| Connectors             | Inputs/outputs, power supply, and communication | Removable                                                                 |                                                                                  |  |  |  |
|                        | HTG relay                                       | Constant                                                                  |                                                                                  |  |  |  |
|                        | Maximum cable size                              | 2.5 mm <sup>2</sup>                                                       |                                                                                  |  |  |  |
| Dimensions             | Width                                           | 123.30 mm/4.85 in                                                         |                                                                                  |  |  |  |
|                        | Length                                          | 136.60 mm/5.38 in                                                         |                                                                                  |  |  |  |



| Heigh | nt | 54.50 mm/2.15 in |
|-------|----|------------------|
|-------|----|------------------|

Table 2. Technical specification



### 4 Hardware Specification

### 4.1 **Dimensions**

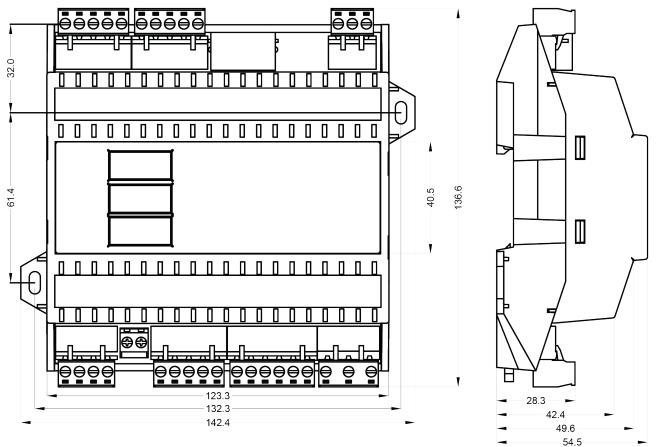



Figure 4. Dimensions

### 4.2 Power Supply

The iSMA-B-FCU-HH and iSMA-B-FCU-HL versions are designed to work with the 230 V AC power supply. Each iSMA-B-FCU device is equipped with a built-in 6 A fuse protecting the controller and the connected 230 V AC equipment.

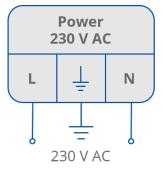



Figure 5. 230 V AC power supply

The iSMA-B-FCU-LL version is designed to work with the 24 V AC power supply. The device is equipped with a built-in 6 A fuse protecting the controller and the connected 24 V AC equipment.



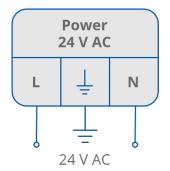



Figure 6. 24 V AC power supply

Note: Total current for digital relay outputs O1-O4 cannot exceed 6 A.

#### WARNING!

It is forbidden to use a fuse with current exceeding 6 A! Higher current may permanently damage the device and cause danger to the user and to the equipment!

#### 4.2.1 24 V AC Power Supply for External Equipment

The iSMA-B-FCU-HH is equipped with a 24 V AC, 7 VA power supply output to supply an external equipment like sensors and actuators. This power supply uses a separate coil in the transformer. The 24 V AC power supply terminal connection is labeled L2, N2.

The iSMA-B-FCU-HL is equipped with a 24 V AC power supply output for thermal valves controlled by triac outputs and external devices like sensors and actuators. This power supply uses a separate coil in the transformer. The 24 V AC power supply terminal connection is labeled L2, N2. The total power consumption with thermal valves and external devices cannot exceed 7 VA (~0.3 A).

The iSMA-B-FCU-LL is equipped with a 24 V AC, 7 VA power supply output to supply the external equipment like sensors and actuators. This power supply uses a separate 24 V AC transformer. The external separate power supply terminal connection is labeled L2, N2.

#### 4.3 RJ12 Socket for External Connections

The RJ12 socket is designed for connecting external modules, Modbus devices, and room/ wall panels. The FCU device has two parallel RJ12 sockets (RS485 interface in a switch mode) with the same pin configuration. These sockets provide communication in the Modbus RTU protocol.

The RJ12 socket provides a power supply dedicated for external room panels with maximum load up to 2.5 W per both sockets. Before connecting devices powered from RJ12, please calculate the power supply load. For example, the power consumption of the LP/Touch Point panels with a temperature sensor, on average, is 0.5 W, so the maximum number of such panels on the bus is 5, while the average power consumption of the FP panels is 0.2 W, so the maximum number of such panels on the maximum number of such panels on the bus is 10. It is recommended to connect maximum 5 LP/Touch Point panels working at the same time or 10 FP panels.



#### Worth to notice:

Connected panels can be freely combined (5 LP panels, or 5 Touch Point panels, or 2 LP panels and 3 Touch Point panels, or 3 Touch Point panels and 5 FP panels etc.). It is important not to exceed a maximum load of 2.5 W for both RJ12 sockets together.

For short distance, up to 100 m, it is recommended to use for connection a standard category 3-, 4-, or 6-wire telephone straight cable without crossing (for example, YTLYP 6x0.12). For longer distance, it is recommended to use a standard twisted shielded Modbus cable.

RJ12 pins in the FCU controller are shown in the figure below.

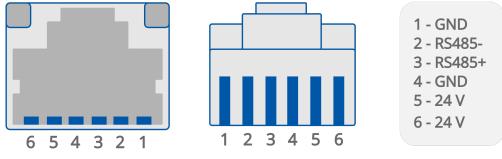



Figure 7. RJ12 pins

To connect the LP, Touch Point, or FP panel, use the following types of cables:

• LP: RJ12-RJ12 cable;

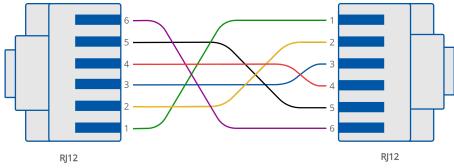



Figure 8. RJ12-RJ12 connection of the LP panel

• Touch Point: RJ12-RJ45 cable (the Touch Point panel is equipped with RJ45 sockets):

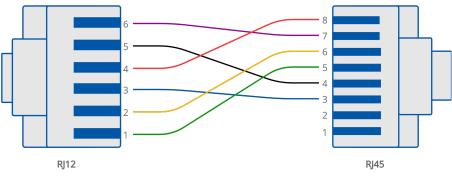



Figure 9. RJ12-RJ45 connection of the Touch Point panel

• FP: RJ12-screw connector cable (the FP panel is equipped with a 4-pin screw terminal):

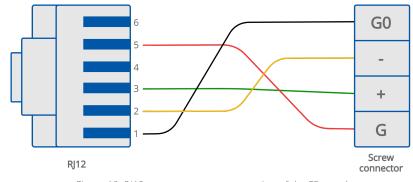



Figure 10. RJ12-screw connector connection of the FP panel

### 4.4 Front Panel and DIP Switches




Figure 11. FCU front panel

### 4.4.1 USB1 Port

The iSMA-B-FCU device has a built-in mini USB1 port designed to manage controller firmware and application, as well as for diagnostics.

This USB1 port also provides controller power supply for commissioning processes and for application diagnostics. If the controller is powered up by a USB, all inputs and outputs are operational (except for triac outputs, which require external power supply).

### 4.4.2 LED

The iSMA-B-FCU device is equipped with 4 LED diodes for quick status check and diagnostics:

- The power LED (ON) lights up (green) after turning the power on.
- The communication LED (COM1):
  - in the Modbus protocol: lights up (orange) for 20 ms after sending each package through the main RS485 port. As long as module receives/sends packages, the communication LED blinks continuously;
  - in the BACnet protocol: lights up (orange) while receiving a data package.
- The extension communication LED (COM2) lights up (orange) for 20 ms after sending each package through the extension ports. As long as the module receives/sends packages, the extension communication LED blinks continuously.
- The ALM LED is off by default, the function is programmable through the LED\_ALARM component; it blinks very softly if there is a fault during the start-up of Sedona Virtual Machine.



- During the device's reset, when the 6<sup>th</sup> switch in the S1 PROTOCOL DIP switch is on (default settings restoration mode), the power LED (ON) blinks in 300 ms time intervals. After the switch 6 is switched off, the power LED is lit permanently, and the default settings are restored.
- If the device remains in the bootloader status, the power LED (ON) and the communication LED (COM1) blink alternatively. The communication LED keeps its functionality and blinks also after sending/receiving data packages.

### 4.4.3 DIP Switch

The iSMA-B-FCU controller is equipped with 3 DIP switches:

- 6-position S1 PROTOCOL DIP switch;
- 8-position S2 MAC DIP switch;
- 8-position S3 CFG DIP switch.

#### **S1 PROTOCOL DIP Switch: Baud Rate Selection**

Transmission baud rate is determined by S1 switch (sections 1, 2, and 3 of the PROTOCOL DIP switch) in accordance with the following table.

| 1       | 2       | 3       | Baud Rate           |
|---------|---------|---------|---------------------|
| Off (0) | Off (0) | Off (0) | Defined by the user |
| Off (0) | Off (0) | On (1)  | 76800               |
| Off (0) | On (1)  | Off (0) | 4800                |
| Off (0) | On (1)  | On (1)  | 9600                |
| On (1)  | Off (0) | Off (0) | 19200               |
| On (1)  | Off (0) | On (1)  | 38400               |
| On (1)  | On (1)  | Off (0) | 57600               |
| On (1)  | On (1)  | On (1)  | 115200              |

Table 3. Setting baud rate

#### **S1 PROTOCOL DIP Switch: Protocol Selection**

Protocol selection is made with sections 4 and 5 of the PROTOCOL DIP switch according to the table.

| 4       | 5       | Protocol      |
|---------|---------|---------------|
| Off (0) | Off (0) | Modbus RTU    |
| Off (0) | On (1)  | Modbus ASCII  |
| On (1)  | Off (0) | BACnet client |



| 4                         | 5      | Protocol      |  |  |  |  |
|---------------------------|--------|---------------|--|--|--|--|
| On (1)                    | On (1) | BACnet server |  |  |  |  |
| Table 4. Setting protocol |        |               |  |  |  |  |

In BACnet mode, switch number 4 must be in ON(1) position, and switch number 5 decides if BACnet works in client or server mode (please see the above table). In order to activate the BACnet server mode after setting the 5th DIP switch to on, it is required to set the MAC address on the S2 MAC DIP switch to one from a BACnet server range (128-254).

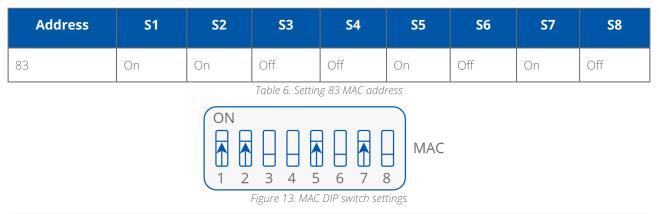
#### S2 MAC DIP Switch: Setting Controller Address

The controller address is set with the MAC DIP switch. The procedure of setting the address in presented in the figure and table below. The addressing table is available in the separate section.

| L | S | В |
|---|---|---|

| 3 |   | П | A    | A     | Π    | A | A     | A | MAC | MSB |
|---|---|---|------|-------|------|---|-------|---|-----|-----|
|   | 1 | 2 | 3    | 4     | 5    | 6 | 7     | 8 |     |     |
|   |   |   | Liau | 10 17 | AAAC |   | witch |   |     |     |

| Section of MAC DIP switch | Position | Function              |
|---------------------------|----------|-----------------------|
| 1                         | On       | Add 1 to MAC address  |
|                           | Off      | Add 0 to MAC address  |
| 2                         | On       | Add 2 to MAC address  |
|                           | Off      | Add 0 to MAC address  |
| 3                         | On       | Add 4 to MAC address  |
|                           | Off      | Add 0 to MAC address  |
| 4                         | On       | Add 8 to MAC address  |
|                           | Off      | Add 0 to MAC address  |
| 5                         | On       | Add 16 to MAC address |
|                           | Off      | Add 0 to MAC address  |
| 6                         | On       | Add 32 to MAC address |
|                           | Off      | Add 0 to MAC address  |


Figure 12. MAC DIP switch

| Section of MAC DIP switch | Position | Function               |
|---------------------------|----------|------------------------|
| 7                         | On       | Add 64 to MAC address  |
|                           | Off      | Add 0 to MAC address   |
| 8                         | On       | Add 128 to MAC address |
|                           | Off      | Add 0 to MAC address   |

Table 5. Setting MAC address

**Example:** Configuration setting of the iSMA-B-FCU device address 83.

Address 83 contains following multiplicity of number 2: 83 = 1 + 2 + 16 + 64. Address DIP switch settings are presented in the table below. All addresses of DIP switch configuration are presented in the separate section.



#### Warning!

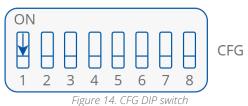
In BACnet network setting, the address above 128 automatically switches BACnet to slave mode. In this mode, the device cannot be discovered in device searching process.

#### Warning!

Do not set address 255 (all switches in ON position). This address setting is reserved for system operation.

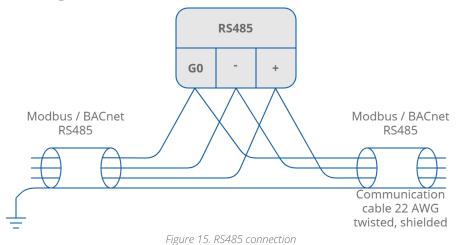
#### Setting Device ID in the BACnet Protocol

Formula for the Device ID:


Device ID = Vendor ID \* 1000 + MAC + 128 (only in BACnet slave) where iSMA CONTROLLI Poland Vendor ID = 826.

For example, if the MAC address is set to 41, and the protocol is set to BACnet master, then the Device ID = 826041, or if the protocol is set to BACnet slave, then the Device ID = 826169.




#### S3 CFG DIP Switch

The iSMA-B-FCU device has the 8-position DIP switch, which can be used in client application. Each of 8 positions can have true or false state. This DIP switch is dedicated for setting configuration in client application.



### 4.5 RS485 Communication

#### 4.5.1 Connecting RS485 Communication Bus



#### 4.5.2 RS485 Grounding and Shielding

In most cases controllers are installed in enclosures along with other devices, which generate electromagnetic radiation (for example, relays, contactors, transformers, motor invertors, etc.). Such electromagnetic radiation can induce electrical noise into both power and signal lines, as well as direct radiation into the controller, causing negative effects on the system. For this reason, an appropriate grounding, shielding, and other protective steps should be taken at the installation stage to prevent negative electromagnetic radiation effects, for example:

- · control cabinet grounding;
- cable shield grounding;
- using protective elements for electromagnetic switching devices;
- proper wiring;
- consideration of cable types and their cross sections;
- and other.

### 4.5.3 RS485 Network Termination

Transmission line effects often present problems for data communication networks. These problems include reflections and signal attenuation.



To eliminate the presence of reflections of signal from the end of the cable, the cable must be terminated at both ends with a resistor across the line adequate to its characteristic impedance. Both ends must be terminated since the propagation is bidirectional. In case of an RS485 twisted pair cable this termination is typically 120  $\Omega$ .

#### 4.6 Terminals and Internal Connections

There are 3 types of hardware available:

- iSMA-B-FCU-HH with 230 V AC power supply and triac outputs;
- iSMA-B-FCU-HL with 230 V AC power supply and 24 V AC triac outputs;
- iSMA-B-FCU-LL with 24 V AC power supply and triac outputs.

### 4.6.1 iSMA-B-FCU-HH

The iSMA-B-FCU-HH hardware version has a high voltage power supply (230 V AC) and high voltage triac outputs (230 V AC). The triac outputs are connected directly to the main controller power supply, as presented in the diagram below. The maximum current for each triac output is 0.5 A. The maximum power consumed by the external equipment connected to 24 V terminals (L2, N2) cannot exceed 7 VA in total.

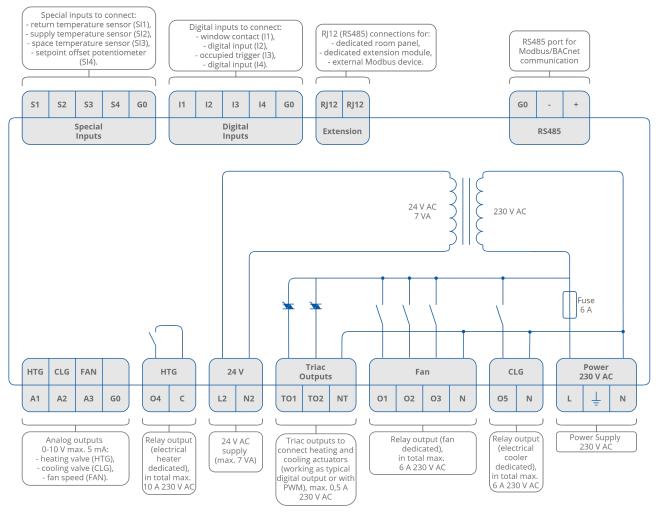
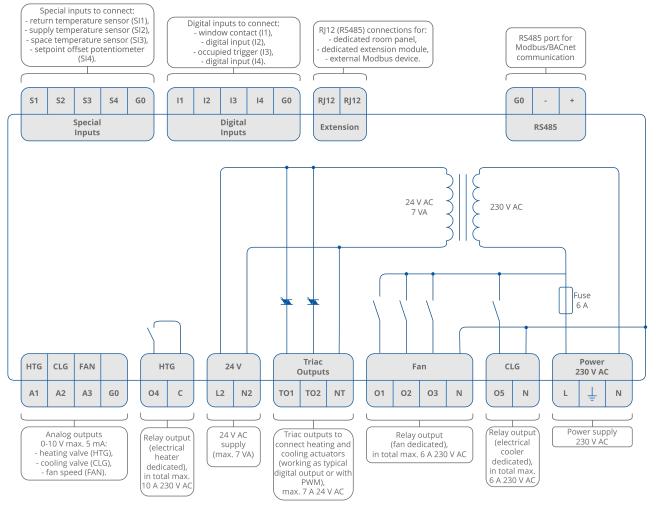




Figure 16. iSMA-B-FCU-HH diagram of terminals and internal connections



### 4.6.2 iSMA-B-FCU-HL

The iSMA-B-FCU-HL hardware version has a high voltage power supply (230 V AC) and low voltage triac outputs (24 V AC). The triac outputs are connected to a built-in 24 V AC transformer, as shown in the diagram below. The maximum power consumed by the external equipment connected to the triac outputs and to 24 V terminals (L2, N2) cannot exceed 7 VA in total.



*Figure 17. iSMA-B-FCU-HL diagram of terminals and internal connections* 

### 4.6.3 iSMA-B-FCU-LL

The iSMA-B-FCU-LL hardware version has a low voltage power supply and triac outputs (24 V AC). The triac outputs are connected to power supply terminals. The maximum current for each of the triac outputs is 0.5 A. The maximum power used by the external equipment connected to the 24 V terminals (L2, N2) cannot exceed 7 VA in total.



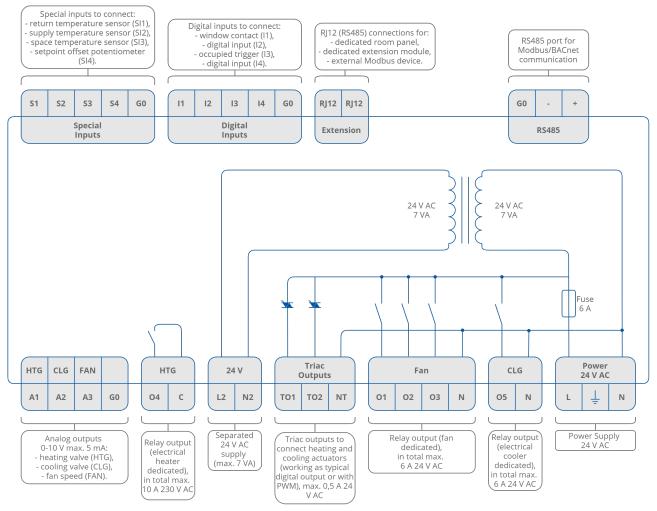



Figure 18. iSMA-B-FCU-LL diagram of terminals and internal connections

### 4.7 Default Settings

Out of the box device as well as after restoring default values procedure, has got the following default settings:

| Name                                            | Default Value |
|-------------------------------------------------|---------------|
| User baud rate                                  | 76800         |
| Stop bits                                       | 1             |
| Data bits                                       | 8             |
| Parity bits                                     | 0             |
| Response delay                                  | 0             |
| I1-I4 digital input counters                    | 0             |
| Non-volatile values stored in the EEPROM memory | Cleared       |
| I/O configuration                               | Cleared       |

Table 7. Default values



### 4.7.1 Restoring Default Settings

To restore the default iSMA-B-FCU device settings, follow the steps below:

Step 1: Turn the power supply off.

**Step 2:** Set the 6<sup>th</sup> switch of the Protocol DIP switch to ON.

Step 3: Turn on the power supply, wait until the power LED blinks.

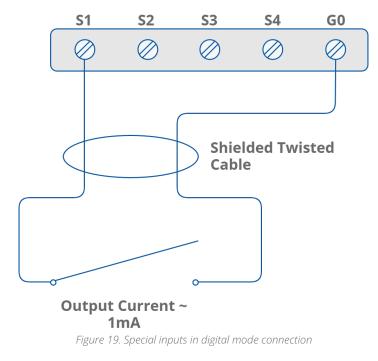
**Step 4:** Set the 6<sup>th</sup> switch of the Protocol DIP switch to OFF to restore the default settings. To cancel the reset, turn off the power supply, and set the 6<sup>th</sup> switch of the Protocol DIP switch to the OFF position.



### **5** Inputs and Outputs

### 5.1 Inputs

The iSMA-B-FCU device is equipped with two types of inputs: 4 digital inputs (for Boolean values) and 4 special inputs (for resistance and voltage measurement).


### 5.1.1 Special Inputs

The iSMA-B-FCU device has 4 built-in special inputs, which can work in the following modes:

- digital (dry contact);
- analog (0-10 V DC);
- resistance (0-1000 kΩ (1 MΩ));
- temperature (working with NTC sensors).

#### **Special Input in Digital Mode**

In this mode, the special input works as a digital input dry contact and reactive Boolean value, false for open circuit and true for close circuit. The circuit status is measured with 1 mA current.



#### **Special Input in Analog Mode**

In this mode, the special input measures voltage in the range from 0 to 10 V DC (10 000 mV) with 6 mV resolution.



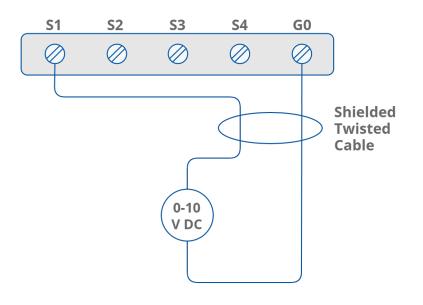
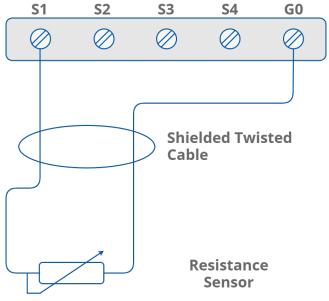
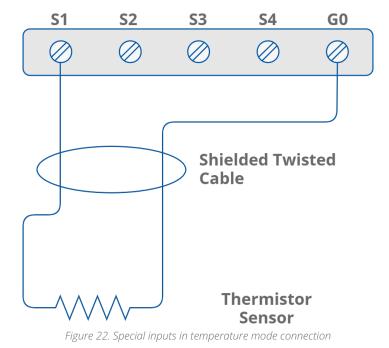



Figure 20. Special inputs in analog mode connection

#### **Special Input in Resistance Mode**

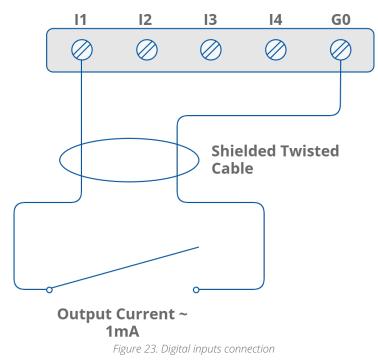
In this mode, the special input measures resistance value with the voltage driver. The input works in range from 0 to 1000 k $\Omega$  (1 M $\Omega$ ), with resolution ±20  $\Omega$  for 20 k $\Omega$  load.





Figure 21. Special inputs in resistance mode connection

#### **Special Input in Temperature Mode**

In this mode, the special input measures NTC sensor resistance with the voltage driver and converts to temperature value. The special input is equipped with a built-in conversion table for the following NTC sensors:


- 10K3A1 NTC B=3975K temperature sensor;
- 10K4A1 NTC B=3695K temperature sensor;
- 10K NTC B=3435K Carel temperature sensor;
- 20K6A1 NTC B=4262K temperature sensor;
- 2K3A1 NTC B=3975K temperature sensor;

- 3K3A1 NTC B=3975K temperature sensor;
- 30K6A1 NTC B=4262K temperature sensor;
- SIE1 temperature sensor;
- TAC1 temperature sensor;
- SAT1 temperature sensor.



### 5.1.2 Digital Inputs

The iSMA-B-FCU device is equipped with 4 digital inputs. The figure below presents the way they are connected.





#### **Digital Input Fast Counter**

The digital input can work as a counter of dry contact pulses up to 100 Hz. The counter value is saved in the non-volatile EEPROM memory.

#### Warning!

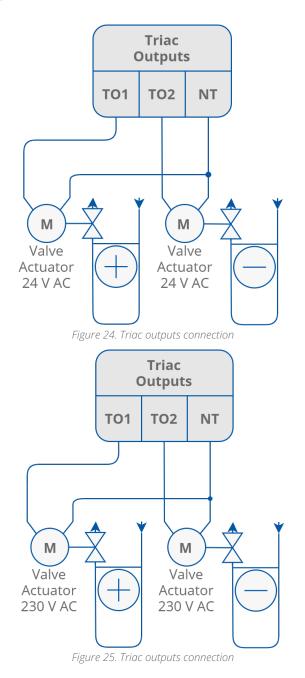
If the default settings are restored, the value of the counter is set to 0.

### 5.2 Outputs

The iSMA-B-FCU device is equipped with three types of outputs: 2 triac outputs, 5 digital outputs, and 4 analog outputs.

### 5.2.1 Triac Outputs

The iSMA-B-FCU device is equipped with two triac outputs designed for heating and cooling thermal valve actuators. Depending on controller model, triac outputs can be connected to actuators with 230 V AC supply (for iSMA-B-FCU-HH) or to actuators with 24 V AC supply (for iSMA-B-FCU-HL and iSMA-B-FCU-LL). In the iSMA-B-FCU-HL version, triac outputs are supplied with 24 V AC from a build-in transformer, whereas in iSMA-B-FCU-LL and iSMA-B-FCU-HH triac outputs are connected directly to power supply terminals.


Triac outputs can work as typical binary outputs (for the binary temperature control) or with PWM modulation. The PWM mode has two parameters:

- duration time in seconds (this value depends on valve parameters);
- fill out (percentage value of signal fill out).

#### Warning!

In case of the iSMA-B-FCU-HH or iSMA-B-FCU-LL hardware versions, the actuators connected to each triac output may consume up to 0.5 A under constant load. In some cases, the current can be higher for a limited time, 1.5 A up to 30 seconds. In case of the iSMA-B-FCU-HL controller, the sum of power consumption of both triac outputs and 24 V AC output cannot exceed 0.3 A (7 VA):  $I_{max} = 0.3 A = I_{TO1} + I_{TO2} + I_{24VOut}$ .

The figure below presents the way actuators are connected to triac outputs (for 4-pipe mode).



### **5.2.2 Digital Outputs**

All digital outputs are based on relays, which can operate with 230 V AC voltage (in iSMA-B-FCU-LL, digital outputs are working with 24 V AC). The iSMA-B-FCU device has 2 types of digital outputs:

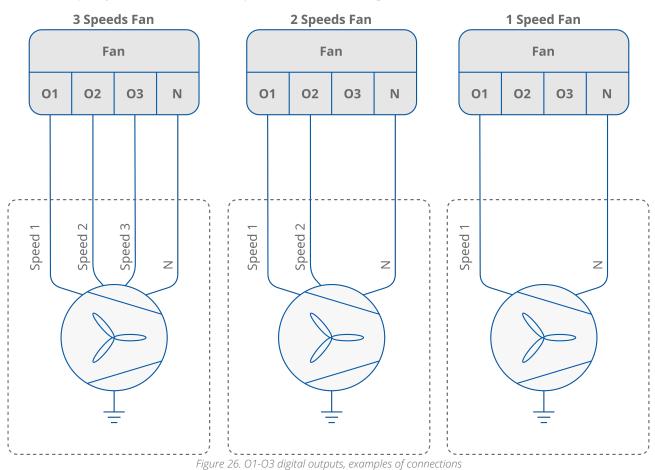
- O1-03 and 05: relay outputs connected directly to power supply terminal;
- O4: a relay separated from iSMA-B-FCU device circuits.

#### **O1-O3 Fan Relays**

The iSMA-B-FCU device is equipped with three relay outputs, designed for connecting up to 3 speed fans. The way the fans are connected (depending on the number of speeds) is presented in the figure below. The common terminal for those outputs is connected directly to the power supply "L" terminal.



Outputs O1-O3 and output O5 are protected by a built-in 6 A fuse. Total current for digital relays outputs O1-O3 and O5 cannot exceed 6 A.


#### Warning!

It is forbidden to use a fuse with current exceeding 6 A! Higher current may permanently damage device and cause danger to the user and to the equipment!

#### Warning!

In iSMA-B-FCU-LL, the 24 V AC fan motor is required.

The exemplary fan connection is presented in the figure below.



#### **O4 HTG Relay**

The iSMA-B-FCU device is equipped with relay output, which in the FCU application is dedicated to an external heater. This relay is separated from the rest of the control circuit. Current consumption cannot exceed 10 A with 250 V AC power supply. The figure below presents the way of connecting.



HTG relay voltage is always limited to 250 V AC, irrespectively of the power supply version of the FCU controller.

#### Warning!

This digital output is equipped with a separate circuit with 10 A relay. This circuit requires using external fuse protection up to 10 A. The current higher than 10 A may permanently damage device and cause danger to the user and to the equipment!

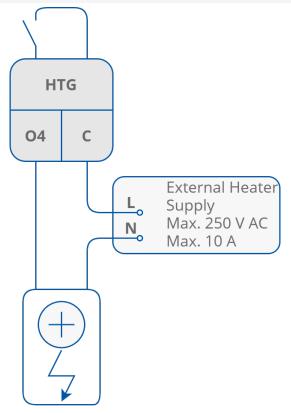



Figure 27. Example of an electrical heater connection

#### **O5 CLG Relay**

The iSMA-B-FCU device is equipped with a relay output, which in the FCU application is dedicated to an external cooler. This relay output is internally connected to the power supply, therefore there is no need to connect external supply. In iSMA-B-FCU-HH and iSMA-B-FCU-HL the output voltage in high state is 230 V AC, and in iSMA-B-FCU-LL version the high state voltage is 24 V AC. Current consumption cannot exceed 6 A. An exemplary way of connecting is presented in the figure below.

#### Warning!

Output O4 and outputs O1-O3 are protected by a 6 A fuse. Total current for digital relay outputs cannot exceed 6 A.



It is forbidden to use a fuse with current exceeding 6 A! Higher current may permanently damage the device and cause a danger to the user and to the equipment!

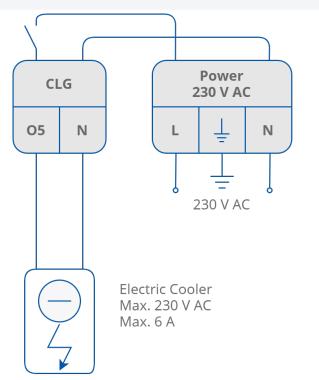



Figure 28. O5 digital output, example of 230 V AC electrical cooler connection (iSMA-B-FCU-HH, iSMA-B-FCU-HL)

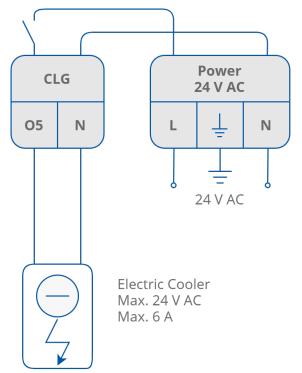



Figure 29. O5 digital output, example of 24 V AC electrical cooler connection (iSMA-B-FCU-LL)



### 5.2.3 Analog Outputs

The iSMA-B-FCU device is equipped with 3 analog outputs 0-10 V DC. These outputs are designed for controlling the following actuators:

- A1 (HTG), analog heating valve actuator;
- A2 (CTG), analog cooling valve actuator;
- A3 (FAN), analog fan speed control.

The recommended way of connecting analog outputs is presented in the figures below.

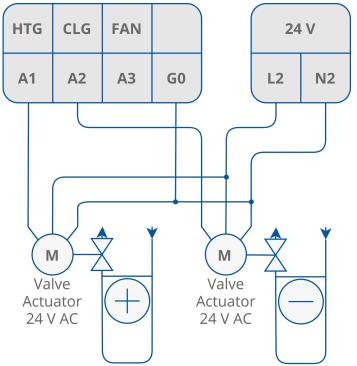
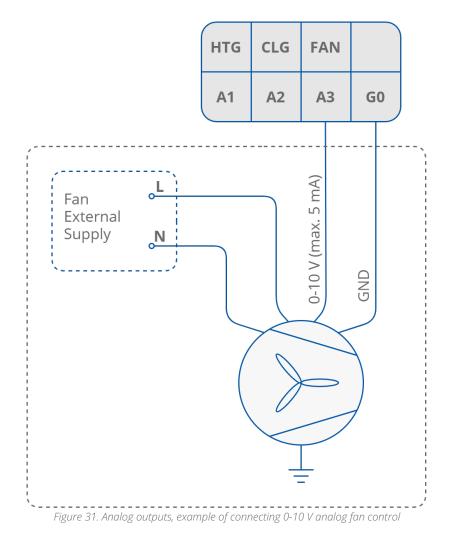




Figure 30. Analog outputs, example of connecting 0-10 V analog valve actuators







### 6 List of Supported Temperature Sensors

- 10K3A1
- 10K4A1
- 10K
- 20K6A1
- 2.2K3A1
- 3K3A1
- 30K6A1
- SIE1
- TAC1
- SAT1

| No.           | 1                                               |
|---------------|-------------------------------------------------|
| Sensor        | 10K3A1                                          |
| βcoefficient  | 3975К                                           |
| Manufacturers | Cylon, Honeywell, Johnson, Satchwell, Seachange |
| °C            | Ω                                               |
| -45           | 491749                                          |
| -40           | 335671                                          |
| -35           | 241840                                          |
| -30           | 176683                                          |
| -25           | 131251                                          |
| -20           | 96974                                           |
| -15           | 72895                                           |
| -10           | 55298                                           |
| -5            | 42314                                           |
| 0             | 32650                                           |
| 5             | 25396                                           |
| 10            | 19904                                           |
| 15            | 15714                                           |
| 20            | 12494                                           |
| 25            | 10000                                           |



| No.           | 1                                    |
|---------------|--------------------------------------|
| 30            | 8056                                 |
| 35            | 6530                                 |
| 40            | 5325                                 |
| 45            | 4367                                 |
| 50            | 3601                                 |
| 55            | 2985                                 |
| 60            | 2487                                 |
| 65            | 2082                                 |
| 70            | 1751                                 |
| 75            | 1480                                 |
| 80            | 1256                                 |
| 85            | 1070                                 |
| 90            | 916                                  |
| 95            | 787                                  |
| 100           | 678                                  |
| 105           | 587                                  |
| 110           | 510                                  |
| 115           | 444                                  |
| 120           | 388                                  |
| 125           | 340                                  |
| No.           | 2                                    |
| Sensor        | 10K4A1                               |
| βcoefficient  | 3695K                                |
| Manufacturers | Andover, Delta Controls, Siebe, York |
| °C            | Ω                                    |
| -45           | 330749                               |



| No. | 2      |
|-----|--------|
| -40 | 239831 |
| -35 | 181532 |
| -30 | 135233 |
| -25 | 105081 |
| -20 | 78930  |
| -15 | 61030  |
| -10 | 47549  |
| -5  | 37316  |
| 0   | 29490  |
| 5   | 23462  |
| 10  | 18787  |
| 15  | 15136  |
| 20  | 12268  |
| 25  | 10000  |
| 30  | 8197   |
| 35  | 6754   |
| 40  | 5594   |
| 45  | 4656   |
| 50  | 3893   |
| 55  | 3271   |
| 60  | 2760   |
| 65  | 2339   |
| 70  | 1990   |
| 75  | 1700   |
| 80  | 1458   |
| 85  | 1255   |

| No. | 2    |
|-----|------|
| 90  | 1084 |
| 95  | 939  |
| 100 | 817  |
| 105 | 713  |
| 110 | 624  |
| 115 | 547  |
| 120 | 482  |
| 125 | 426  |

| No.           | 3      |
|---------------|--------|
| Sensor        | 10K    |
| β coefficient | 3435К  |
| Manufacturers | Carel  |
| °C            | Ω      |
| -40           | 188500 |
| -35           | 144100 |
| -30           | 111300 |
| -25           | 86430  |
| -20           | 67770  |
| -15           | 53410  |
| -10           | 42470  |
| -5            | 33900  |
| 0             | 27280  |
| 5             | 22050  |
| 10            | 17960  |
| 15            | 14690  |

| No. | 3     |
|-----|-------|
| 20  | 12090 |
| 25  | 10000 |
| 30  | 8313  |
| 35  | 6940  |
| 40  | 5827  |
| 45  | 4912  |
| 50  | 4161  |
| 55  | 3536  |
| 60  | 3020  |
| 65  | 2588  |
| 70  | 2228  |
| 75  | 1924  |
| 80  | 1668  |
| 85  | 1451  |
| 90  | 1266  |
| 95  | 1108  |
| 100 | 973   |
| 105 | 857   |
| 110 | 758   |
| 115 | 672   |
| 120 | 597   |
| 125 | 531   |

| No.           | 4      |
|---------------|--------|
| Sensor        | 20K6A1 |
| β coefficient | 4262K  |

| No.           | 4         |
|---------------|-----------|
| Manufacturers | Honeywell |
| °C            | Ω         |
| -40           | 806800    |
| -35           | 574400    |
| -30           | 413400    |
| -25           | 300400    |
| -20           | 220600    |
| -15           | 163480    |
| -10           | 122260    |
| -5            | 92220     |
| 0             | 70140     |
| 5             | 53780     |
| 10            | 41540     |
| 15            | 32340     |
| 20            | 25340     |
| 25            | 20000     |
| 30            | 15886     |
| 35            | 12698     |
| 40            | 10212     |
| 45            | 8260      |
| 50            | 6718      |
| 55            | 5494      |
| 60            | 4518      |
| 65            | 3732      |
| 70            | 3098      |
| 75            | 2586      |

| No. | 4    |
|-----|------|
| 80  | 2166 |
| 85  | 1823 |
| 90  | 1541 |
| 95  | 1308 |
| 100 | 1114 |
| 105 | 953  |
| 110 | 818  |
| 115 | 704  |
| 120 | 609  |
| 125 | 528  |

| No.           | 5                 |
|---------------|-------------------|
| Sensor        | 2.2K3A1           |
| β coefficient | 3975К             |
| Manufacturers | Ambiflex, Johnson |
| °C            | Ω                 |
| -50           | 154464            |
| -45           |                   |
| -40           | 77081             |
| -35           |                   |
| -30           | 40330             |
| -25           |                   |
| -20           | 22032             |
| -15           |                   |
| -10           | 12519             |
| -5            | 9529              |

| No. | 5    |
|-----|------|
| 0   | 7373 |
| 5   | 5719 |
| 10  | 4487 |
| 15  | 3539 |
| 20  | 2814 |
| 25  | 2252 |
| 30  | 1814 |
| 35  | 1471 |
| 40  | 1199 |
| 45  | 983  |
| 50  | 812  |
| 55  | 672  |
| 60  | 561  |
| 65  | 469  |
| 70  | 395  |
| 75  | 333  |
| 80  | 284  |
| 85  | 241  |
| 90  | 207  |
| 95  | 177  |
| 100 | 154  |
| 105 | 132  |
| 110 | 116  |
| 115 |      |
| 120 | 88   |
| 125 |      |

| No.           | 6       |
|---------------|---------|
| Sensor        | 3K3A1   |
| βcoefficient  | 3975К   |
| Manufacturers | Alerton |
| °C            | Ω       |
| -50           | 200348  |
| -45           | 150524  |
| -40           | 100701  |
| -35           | 76853   |
| -30           | 53005   |
| -25           | 41048   |
| -20           | 29092   |
| -15           | 21868   |
| -10           | 16589   |
| -5            | 12694   |
| 0             | 9795    |
| 5             | 7619    |
| 10            | 5971    |
| 15            | 4714    |
| 20            | 3748    |
| 25            | 3000    |
| 30            | 2417    |
| 35            | 1959    |
| 40            | 1598    |
| 45            | 1310    |
| 50            | 1080    |
| 55            | 896     |

| No. | 6   |
|-----|-----|
| 60  | 746 |
| 65  | 625 |
| 70  | 526 |
| 75  | 444 |
| 80  | 377 |
| 85  | 321 |
| 90  | 275 |
| 95  | 236 |
| 100 | 204 |
| 105 | 176 |
| 110 | 153 |
| 115 | 133 |
| 120 | 117 |
| 125 | 102 |

| No.           | 7       |
|---------------|---------|
| Sensor        | 30K6A1  |
| βcoefficient  | 4262K   |
| Manufacturers | Drayton |
| °C            | Ω       |
| -30           | 622911  |
| -25           | 477393  |
| -20           | 331876  |
| -15           | 245785  |
| -10           | 183697  |
| -5            | 138502  |

| No. | 7      |
|-----|--------|
| 0   | 105305 |
| 5   | 60713  |
| 10  | 62347  |
| 15  | 48511  |
| 20  | 38019  |
| 25  | 30000  |
| 30  | 23828  |
| 35  | 19046  |
| 40  | 15317  |
| 45  | 12390  |
| 50  | 10079  |
| 55  | 8243   |
| 60  | 6777   |
| 65  | 5600   |
| 70  | 4650   |
| 75  | 3879   |
| 80  | 3251   |
| 85  | 2737   |
| 90  | 2313   |
| 95  | 1963   |
| 100 | 1672   |
| 105 | 1430   |
| 110 | 1228   |
| 115 | 1058   |
| 120 | 915    |
| 125 | 793    |

| No.           | 8                    |
|---------------|----------------------|
| Sensor        | SIE1                 |
| Manufacturers | Barber Colman, Siebe |
| °C            | Ω                    |
| -50           | 10732                |
| -45           | 10624                |
| -40           | 10517                |
| -35           | 10344                |
| -30           | 10172                |
| -25           | 9913                 |
| -20           | 9654                 |
| -15           | 9320                 |
| -10           | 8933                 |
| -5            | 8496                 |
| 0             | 8044                 |
| 5             | 7489                 |
| 10            | 6938                 |
| 15            | 6370                 |
| 20            | 5798                 |
| 25            | 5238                 |
| 30            | 4696                 |
| 35            | 4185                 |
| 40            | 3707                 |
| 45            | 3271                 |
| 50            | 2875                 |
| 55            | 2521                 |
| 60            | 2206                 |

| No. | 8    |
|-----|------|
| 65  | 1929 |
| 70  | 1685 |
| 75  | 1472 |
| 80  | 1287 |
| 85  | 1127 |
| 90  | 986  |
| 95  | 866  |
| 100 | 760  |
| 105 | 670  |
| 110 | 590  |
| 115 | 522  |
| 120 | 462  |
| 125 | 410  |

| No.           | 9     |
|---------------|-------|
| Sensor        | TAC1  |
| β coefficient | 3500К |
| Manufacturers | TAC   |
| °C            | Ω     |
| -40           | 39024 |
| -35           | 29358 |
| -30           | 22284 |
| -25           | 17073 |
| -20           | 13192 |
| -15           | 10276 |
| -10           | 8068  |

| No. | 9    |
|-----|------|
| -5  | 6382 |
| 0   | 5085 |
| 5   | 4078 |
| 10  | 3294 |
| 15  | 2676 |
| 20  | 2188 |
| 25  | 1800 |
| 30  | 1488 |
| 35  | 1237 |
| 40  | 1034 |
| 45  | 869  |
| 50  | 733  |
| 55  | 622  |
| 60  | 529  |
| 65  | 453  |
| 70  | 389  |
| 75  | 335  |
| 80  | 290  |
| 85  | 252  |
| 90  | 220  |
| 95  | 192  |
| 100 | 169  |
| 105 | 149  |
| 110 | 131  |
| 115 | 116  |
| 120 | 103  |

www.ismacontrolli.com

| No. | 9  |
|-----|----|
| 125 | 92 |

| No.           | 10        |
|---------------|-----------|
| Sensor        | SAT1      |
| Manufacturers | Satchwell |
| °C            | Ω         |
| -45           | 9652      |
| -40           | 9584      |
| -35           | 9467      |
| -30           | 9349      |
| -25           | 9159      |
| -20           | 8968      |
| -15           | 8708      |
| -10           | 8396      |
| -5            | 8031      |
| 0             | 7614      |
| 5             | 7150      |
| 10            | 6649      |
| 15            | 6121      |
| 20            | 5580      |
| 25            | 5039      |
| 30            | 4513      |
| 35            | 4012      |
| 40            | 3545      |
| 45            | 3117      |
| 50            | 2730      |



| No. | 10   |
|-----|------|
| 55  | 2386 |
| 60  | 2082 |
| 65  | 1816 |
| 70  | 1585 |
| 75  | 1385 |
| 80  | 1213 |
| 85  | 1064 |
| 90  | 937  |
| 95  | 828  |
| 100 | 734  |
| 105 | 654  |
| 110 | 585  |
| 115 | 525  |
| 120 | 474  |
| 125 | 429  |



# 7 MAC DIP Switch Addressing Table

| Address | S1 | <b>S2</b> | <b>S</b> 3 | S4 | S5 | <b>S</b> 6 | S7 | <b>S</b> 8 |
|---------|----|-----------|------------|----|----|------------|----|------------|
| 1       | On |           |            |    |    |            |    |            |
| 2       |    | On        |            |    |    |            |    |            |
| 3       | On | On        |            |    |    |            |    |            |
| 4       |    |           | On         |    |    |            |    |            |
| 5       | On |           | On         |    |    |            |    |            |
| 6       |    | On        | On         |    |    |            |    |            |
| 7       | On | On        | On         |    |    |            |    |            |
| 8       |    |           |            | On |    |            |    |            |
| 9       | On |           |            | On |    |            |    |            |
| 10      |    | On        |            | On |    |            |    |            |
| 11      | On | On        |            | On |    |            |    |            |
| 12      |    |           | On         | On |    |            |    |            |
| 13      | On |           | On         | On |    |            |    |            |
| 14      |    | On        | On         | On |    |            |    |            |
| 15      | On | On        | On         | On |    |            |    |            |
| 16      |    |           |            |    | On |            |    |            |
| 17      | On |           |            |    | On |            |    |            |
| 18      |    | On        |            |    | On |            |    |            |
| 19      | On | On        |            |    | On |            |    |            |
| 20      |    |           | On         |    | On |            |    |            |
| 21      | On |           | On         |    | On |            |    |            |
| 22      |    | On        | On         |    | On |            |    |            |
| 23      | On | On        | On         |    | On |            |    |            |
| 24      |    |           |            | On | On |            |    |            |
| 25      | On |           |            | On | On |            |    |            |
| 26      |    | On        |            | On | On |            |    |            |

| 27 | On | On |    | On | On |    |  |
|----|----|----|----|----|----|----|--|
| 28 |    |    | On | On | On |    |  |
| 29 | On |    | On | On | On |    |  |
| 30 |    | On | On | On | On |    |  |
| 31 | On | On | On | On | On |    |  |
| 32 |    |    |    |    |    | On |  |
| 33 | On |    |    |    |    | On |  |
| 34 |    | On |    |    |    | On |  |
| 35 | On | On |    |    |    | On |  |
| 36 |    |    | On |    |    | On |  |
| 37 | On |    | On |    |    | On |  |
| 38 |    | On | On |    |    | On |  |
| 39 | On | On | On |    |    | On |  |
| 40 |    |    |    | On |    | On |  |
| 41 | On |    |    | On |    | On |  |
| 42 |    | On |    | On |    | On |  |
| 43 | On | On |    | On |    | On |  |
| 44 |    |    | On | On |    | On |  |
| 45 | On |    | On | On |    | On |  |
| 46 |    | On | On | On |    | On |  |
| 47 | On | On | On | On |    | On |  |
| 48 |    |    |    |    | On | On |  |
| 49 | On |    |    |    | On | On |  |
| 50 |    | On |    |    | On | On |  |
| 51 | On | On |    |    | On | On |  |
| 52 |    |    | On |    | On | On |  |
| 53 | On |    | On |    | On | On |  |
| 54 |    | On | On |    | On | On |  |

| 55 | On | On | On |    | On | On |    |  |
|----|----|----|----|----|----|----|----|--|
| 56 |    |    |    | On | On | On |    |  |
| 57 | On |    |    | On | On | On |    |  |
| 58 |    | On |    | On | On | On |    |  |
| 59 | On | On |    | On | On | On |    |  |
| 60 |    |    | On | On | On | On |    |  |
| 61 | On |    | On | On | On | On |    |  |
| 62 |    | On | On | On | On | On |    |  |
| 63 | On | On | On | On | On | On |    |  |
| 64 |    |    |    |    |    |    | On |  |
| 65 | On |    |    |    |    |    | On |  |
| 66 |    | On |    |    |    |    | On |  |
| 67 | On | On |    |    |    |    | On |  |
| 68 |    |    | On |    |    |    | On |  |
| 69 | On |    | On |    |    |    | On |  |
| 70 |    | On | On |    |    |    | On |  |
| 71 | On | On | On |    |    |    | On |  |
| 72 |    |    |    | On |    |    | On |  |
| 73 | On |    |    | On |    |    | On |  |
| 74 |    | On |    | On |    |    | On |  |
| 75 | On | On |    | On |    |    | On |  |
| 76 |    |    | On | On |    |    | On |  |
| 77 | On |    | On | On |    |    | On |  |
| 78 |    | On | On | On |    |    | On |  |
| 79 | On | On | On | On |    |    | On |  |
| 80 |    |    |    |    | On |    | On |  |
| 81 | On |    |    |    | On |    | On |  |
| 82 |    | On |    |    | On |    | On |  |

| 83onononononononon840n0n0n0n0n0n0n0n0n0n0n850n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n <td< th=""><th></th><th></th><th>1</th><th>1</th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    | 1  | 1  |    |    |    |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|----|----|----|----|----|--|
| 85OnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOn <td>83</td> <td>On</td> <td>On</td> <td></td> <td></td> <td>On</td> <td></td> <td>On</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83  | On | On |    |    | On |    | On |  |
| 861000000000000000000000000000008700000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <td< td=""><td>84</td><td></td><td></td><td>On</td><td></td><td>On</td><td></td><td>On</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84  |    |    | On |    | On |    | On |  |
| 87OnOnOnInOnInOnIn88InInInInOnOnInInIn89OnInInInInOnInInInIn90InInInInInInInInInInIn91OnInInInInInInInInInInIn92InInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInIn <td>85</td> <td>On</td> <td></td> <td>On</td> <td></td> <td>On</td> <td></td> <td>On</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85  | On |    | On |    | On |    | On |  |
| NotNotNotNotNotNotNot88OnOnInInOnOnOnOnIn89OnInOnInOnOnOnInInIn90OnOnOnOnOnOnInInInIn91OnOnOnOnOnOnInInInIn92OnOnOnOnOnOnInInInIn93OnOnOnOnOnOnInInInIn94OnOnOnOnOnOnInInInIn95OnOnOnOnOnOnOnInInInIn96OnOnInInInInInInInInInIn97OnOnInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInIn<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86  |    | On | On |    | On |    | On |  |
| 890n1n0n0n0n0n0n0n0n900n0n0n0n0n0n0n0n0n0n0n910n0n0n0n0n0n0n0n0n0n0n0n920n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87  | On | On | On |    | On |    | On |  |
| 90Image: selection of the select          | 88  |    |    |    | On | On |    | On |  |
| 91OnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOnOn <td>89</td> <td>On</td> <td></td> <td></td> <td>On</td> <td>On</td> <td></td> <td>On</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89  | On |    |    | On | On |    | On |  |
| 92Image: bis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90  |    | On |    | On | On |    | On |  |
| 93ononononononon940n0n0n0n0n0n0n0n0n0n940n0n0n0n0n0n0n0n0n0n0n950n0n0n0n0n0n0n0n0n0n0n960n0n110n10n0n0n0n0n970n0n0n10n10n0n0n0n0n980n0n0n110n0n0n0n0n0n0n990n0n0n10n10n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91  | On | On |    | On | On |    | On |  |
| 9410100000000950n0n0n0n0n0n0n0n0n0n960n0n110n0n0n0n0n0n0n970n0n110n0n0n0n0n0n0n0n980n0n0n110n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n0n <td>92</td> <td></td> <td></td> <td>On</td> <td>On</td> <td>On</td> <td></td> <td>On</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92  |    |    | On | On | On |    | On |  |
| 95OnOnOnOnOnOnOnOnOnOn96OnOnIIIIIIIII97OnOnIIIIIOnOnII98OnOnIIIIIOnIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93  | On |    | On | On | On |    | On |  |
| 96100100100100100100970n11110n0n1980n0n110n0n1990n0n110n0n11000n0n110n0n11010n0n0n10n0n11020n0n0n10n0n11030n0n0n10n0n11040n0n0n10n0n0n1050n0n0n0n0n0n0n1060n0n0n0n0n0n0n1050n0n0n0n0n0n0n1060n0n0n0n0n0n0n1080n0n0n0n0n0n0n1090n0n0n0n0n0n0n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94  |    | On | On | On | On |    | On |  |
| 97OnOnSolSolOnOnSol98ConOnSolSolSolOnOnSol99OnOnOnSolSolOnOnOnSol100OnOnOnSolSolSolOnOnSol101OnOnOnSolSolOnOnOnSolSol102OnOnOnSolSolSolOnOnSolSolSol103OnOnOnOnSolSolOnOnSolSolSolSol104OnOnOnOnSolSolOnOnSolSolSolSolSolSol105OnOnSolSolOnSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolSolS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95  | On | On | On | On | On |    | On |  |
| 98111111111990n0n0n110n0n11000n10n10n0n0n0n11010n0n0n10n0n0n0n11020n0n0n10n0n0n0n11030n0n0n0n10n0n0n11040n0n0n0n0n0n0n10n1050n0n10n0n0n0n0n10n1060n0n0n0n0n0n0n0n0n111070n0n0n0n0n0n0n0n0n111080n0n0n0n0n0n0n0n0n111090n0n0n0n0n0n0n0n0n0n1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96  |    |    |    |    |    | On | On |  |
| 99OnOnOnInInOnOnOn100InInInInInInInInIn101OnInInInInInInInInIn101OnInInInInInInInInInIn101OnInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInInIn <td< td=""><td>97</td><td>On</td><td></td><td></td><td></td><td></td><td>On</td><td>On</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97  | On |    |    |    |    | On | On |  |
| 1001001001001001001001001001010n0n0n110n0n0n11020n0n0n0n10n0n0n11030n0n0n0n10n0n0n11040n0n0n0n0n0n0n111050n0n10n0n0n0n111060n0n0n0n0n0n0n0n11070n0n0n0n0n0n0n0n0n11080n0n0n0n0n0n0n0n0n0n0n1090n0n0n0n0n0n0n0n0n0n0n0n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98  |    | On |    |    |    | On | On |  |
| Image: constraint of the state of the sta | 99  | On | On |    |    |    | On | On |  |
| Image: series of the         | 100 |    |    | On |    |    | On | On |  |
| 1030n0n0n0n0n0n0n0n1040n110n0n0n0n0n0n1050n0n10n0n0n0n0n0n0n1060n0n0n0n0n0n0n0n0n0n0n1070n0n0n0n0n0n0n0n0n0n0n0n1080n0n0n0n0n0n0n0n0n0n0n0n1090n0n0n0n0n0n0n0n0n0n0n0n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 | On |    | On |    |    | On | On |  |
| 104         Image: Marcine Mar                 | 102 |    | On | On |    |    | On | On |  |
| 105         On         On         On         On         On         On         On         On         On         I           106         On         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>103</td> <td>On</td> <td>On</td> <td>On</td> <td></td> <td></td> <td>On</td> <td>On</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103 | On | On | On |    |    | On | On |  |
| 106         On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104 |    |    |    | On |    | On | On |  |
| 107         On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105 | On |    |    | On |    | On | On |  |
| 108         On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106 |    | On |    | On |    | On | On |  |
| 109         On         On         On         On         On         On         On         On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107 | On | On |    | On |    | On | On |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108 |    |    | On | On |    | On | On |  |
| 110 On On On On On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109 | On |    | On | On |    | On | On |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 |    | On | On | On |    | On | On |  |

|                    | 1         | 1         | 1        | 1          | 1         | 1        | 1          |      |
|--------------------|-----------|-----------|----------|------------|-----------|----------|------------|------|
| 111                | On        | On        | On       | On         |           | On       | On         |      |
| 112                |           |           |          |            | On        | On       | On         |      |
| 113                | On        |           |          |            | On        | On       | On         |      |
| 114                |           | On        |          |            | On        | On       | On         |      |
| 115                | On        | On        |          |            | On        | On       | On         |      |
| 116                |           |           | On       |            | On        | On       | On         |      |
| 117                | On        |           | On       |            | On        | On       | On         |      |
| 118                |           | On        | On       |            | On        | On       | On         |      |
| 119                | On        | On        | On       |            | On        | On       | On         |      |
| 120                |           |           |          | On         | On        | On       | On         |      |
| 121                | On        |           |          | On         | On        | On       | On         |      |
| 122                |           | On        |          | On         | On        | On       | On         |      |
| 123                | On        | On        |          | On         | On        | On       | On         |      |
| 124                |           |           | On       | On         | On        | On       | On         |      |
| 125                | On        |           | On       | On         | On        | On       | On         |      |
| 126                |           | On        | On       | On         | On        | On       | On         |      |
| 127                | On        | On        | On       | On         | On        | On       | On         |      |
| BACnet WARNING! Ad | ldressing | in the ra | nge belo | w will rui | n devices | in BACne | et slave n | node |
| 128                |           |           |          |            |           |          |            | On   |
| 129                | On        |           |          |            |           |          |            | On   |
| 130                |           | On        |          |            |           |          |            | On   |
| 131                | On        | On        |          |            |           |          |            | On   |
| 132                |           |           | On       |            |           |          |            | On   |
| 133                | On        |           | On       |            |           |          |            | On   |
| 134                |           | On        | On       |            |           |          |            | On   |
| 135                | On        | On        | On       |            |           |          |            | On   |
| 136                |           |           |          | On         |           |          |            | On   |
| ·                  |           |           |          |            |           |          |            |      |

| 137 | On |    |    | On |    |    | On |
|-----|----|----|----|----|----|----|----|
| 138 |    | On |    | On |    |    | On |
| 139 | On | On |    | On |    |    | On |
| 140 |    |    | On | On |    |    | On |
| 141 | On |    | On | On |    |    | On |
| 142 |    | On | On | On |    |    | On |
| 143 | On | On | On | On |    |    | On |
| 144 |    |    |    |    | On |    | On |
| 145 | On |    |    |    | On |    | On |
| 146 |    | On |    |    | On |    | On |
| 147 | On | On |    |    | On |    | On |
| 148 |    |    | On |    | On |    | On |
| 149 | On |    | On |    | On |    | On |
| 150 |    | On | On |    | On |    | On |
| 151 | On | On | On |    | On |    | On |
| 152 |    |    |    | On | On |    | On |
| 153 | On |    |    | On | On |    | On |
| 154 |    | On |    | On | On |    | On |
| 155 | On | On |    | On | On |    | On |
| 156 |    |    | On | On | On |    | On |
| 157 | On |    | On | On | On |    | On |
| 158 |    | On | On | On | On |    | On |
| 159 | On | On | On | On | On |    | On |
| 160 |    |    |    |    |    | On | On |
| 161 | On |    |    |    |    | On | On |
| 162 |    | On |    |    |    | On | On |
| 163 | On | On |    |    |    | On | On |
| 164 |    |    | On |    |    | On | On |

| 165 | On |    | On |    |    | On |    | On |
|-----|----|----|----|----|----|----|----|----|
| 166 |    | On | On |    |    | On |    | On |
| 167 | On | On | On |    |    | On |    | On |
| 168 |    |    |    | On |    | On |    | On |
| 169 | On |    |    | On |    | On |    | On |
| 170 |    | On |    | On |    | On |    | On |
| 171 | On | On |    | On |    | On |    | On |
| 172 |    |    | On | On |    | On |    | On |
| 173 | On |    | On | On |    | On |    | On |
| 174 |    | On | On | On |    | On |    | On |
| 175 | On | On | On | On |    | On |    | On |
| 176 |    |    |    |    | On | On |    | On |
| 177 | On |    |    |    | On | On |    | On |
| 178 |    | On |    |    | On | On |    | On |
| 179 | On | On |    |    | On | On |    | On |
| 180 |    |    | On |    | On | On |    | On |
| 181 | On |    | On |    | On | On |    | On |
| 182 |    | On | On |    | On | On |    | On |
| 183 | On | On | On |    | On | On |    | On |
| 184 |    |    |    | On | On | On |    | On |
| 185 | On |    |    | On | On | On |    | On |
| 186 |    | On |    | On | On | On |    | On |
| 187 | On | On |    | On | On | On |    | On |
| 188 |    |    | On | On | On | On |    | On |
| 189 | On |    | On | On | On | On |    | On |
| 190 |    | On | On | On | On | On |    | On |
| 191 | On | On | On | On | On | On |    | On |
| 192 |    |    |    |    |    |    | On | On |

| 193 | On |    |    |    |    | On | On |
|-----|----|----|----|----|----|----|----|
| 194 |    | On |    |    |    | On | On |
| 195 | On | On |    |    |    | On | On |
| 196 |    |    | On |    |    | On | On |
| 197 | On |    | On |    |    | On | On |
| 198 |    | On | On |    |    | On | On |
| 199 | On | On | On |    |    | On | On |
| 200 |    |    |    | On |    | On | On |
| 201 | On |    |    | On |    | On | On |
| 202 |    | On |    | On |    | On | On |
| 203 | On | On |    | On |    | On | On |
| 204 |    |    | On | On |    | On | On |
| 205 | On |    | On | On |    | On | On |
| 206 |    | On | On | On |    | On | On |
| 207 | On | On | On | On |    | On | On |
| 208 |    |    |    |    | On | On | On |
| 209 | On |    |    |    | On | On | On |
| 210 |    | On |    |    | On | On | On |
| 211 | On | On |    |    | On | On | On |
| 212 |    |    | On |    | On | On | On |
| 213 | On |    | On |    | On | On | On |
| 214 |    | On | On |    | On | On | On |
| 215 | On | On | On |    | On | On | On |
| 216 |    |    |    | On | On | On | On |
| 217 | On |    |    | On | On | On | On |
| 218 |    | On |    | On | On | On | On |
| 219 | On | On |    | On | On | On | On |
| 220 |    |    | On | On | On | On | On |

|     |    |    |    |    | 1  |    |    |    |
|-----|----|----|----|----|----|----|----|----|
| 221 | On |    | On | On | On |    | On | On |
| 222 |    | On | On | On | On |    | On | On |
| 223 | On | On | On | On | On |    | On | On |
| 224 |    |    |    |    |    | On | On | On |
| 225 | On |    |    |    |    | On | On | On |
| 226 |    | On |    |    |    | On | On | On |
| 227 | On | On |    |    |    | On | On | On |
| 228 |    |    | On |    |    | On | On | On |
| 229 | On |    | On |    |    | On | On | On |
| 230 |    | On | On |    |    | On | On | On |
| 231 | On | On | On |    |    | On | On | On |
| 232 |    |    |    | On |    | On | On | On |
| 233 | On |    |    | On |    | On | On | On |
| 234 |    | On |    | On |    | On | On | On |
| 235 | On | On |    | On |    | On | On | On |
| 236 |    |    | On | On |    | On | On | On |
| 237 | On |    | On | On |    | On | On | On |
| 238 |    | On | On | On |    | On | On | On |
| 239 | On | On | On | On |    | On | On | On |
| 240 |    |    |    |    | On | On | On | On |
| 241 | On |    |    |    | On | On | On | On |
| 242 |    | On |    |    | On | On | On | On |
| 243 | On | On |    |    | On | On | On | On |
| 244 |    |    | On |    | On | On | On | On |
| 245 | On |    | On |    | On | On | On | On |
| 246 |    | On | On |    | On | On | On | On |
| 247 | On | On | On |    | On | On | On | On |
| 248 |    |    |    | On | On | On | On | On |

| 249 | On |    |    | On | On | On | On | On |
|-----|----|----|----|----|----|----|----|----|
| 250 |    | On |    | On | On | On | On | On |
| 251 | On | On |    | On | On | On | On | On |
| 252 |    |    | On | On | On | On | On | On |
| 253 | On |    | On | On | On | On | On | On |
| 254 |    | On |
| 255 | On |

Table 8. MAC addresses

